Nanophotonic Filters and Integrated Networks in Flexible 2D Polymer Photonic Crystals

نویسندگان

  • Xuetao Gan
  • Hannah Clevenson
  • Cheng-Chia Tsai
  • Luozhou Li
  • Dirk Englund
چکیده

Polymers have appealing optical, biochemical, and mechanical qualities, including broadband transparency, ease of functionalization, and biocompatibility. However, their low refractive indices have precluded wavelength-scale optical confinement and nanophotonic applications in polymers. Here, we introduce a suspended polymer photonic crystal (SPPC) architecture that enables the implementation of nanophotonic structures typically limited to high-index materials. Using the SPPC platform, we demonstrate nanophotonic band-edge filters, waveguides, and nanocavities featuring quality (Q) factors exceeding 2, 300 and mode volumes (V(mode)) below 1.7(λ/n)(3). The unprecedentedly high Q/V(mode) ratio results in a spectrally selective enhancement of radiative transitions of embedded emitters via the cavity Purcell effect with an enhancement factor exceeding 100. Moreover, the SPPC architecture allows straightforward integration of nanophotonic networks, shown here by a waveguide-coupled cavity drop filter with sub-nanometer spectral resolution. The nanoscale optical confinement in polymer promises new applications ranging from optical communications to organic opto-electronics, and nanophotonic polymer sensors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tunable Defect Mode in One-Dimensional Ternary Nanophotonic Crystal with Mirror Symmetry

In this paper, the properties of the defect mode in the photonic band gap ofone-dimensional ternary photonic crystals containing high temperature superconductorlayer (SPCs) have been theoretically investigated. We considered the quasi-periodiclayered structures by choosing two order of ternary Thue-Morse structures with mirrorsymmetry. We investigated the transmission spectra of these structure...

متن کامل

Low Delay Time All Optical NAND, XNOR and OR Logic Gates Based on 2D Photonic Crystal Structure

Background and Objectives: Recently, photonic crystals have been considered as the basic structures for the realization of various optical devices for high speed optical communication. Methods: In this research, two dimensional photonic crystals are used for designing all optical logic gates. A photonic crystal structure with a triangular lattice is proposed for making NAND, XNOR, and OR optica...

متن کامل

New photonic-crystal system for integrated optics

We describe a new photonic-crystal structure with a complete three-dimensional photonic band gap (PBG) and its potential application to integrated optics. The structure not only has a large band gap and is amenable to layer-by-layer litho-fabrication, but also introduces the feature of high-symmetry planar layers resembling two-dimensional photonic crystals. This feature enables integrated opti...

متن کامل

Integrated 2D photonic crystal stack filter fabricated using nanoreplica molding.

The design, fabrication, and characterization of an integrated 2D photonic crystal stack are described for application as optical filters with improved optical density and angle tolerance compared to single photonic crystal slabs. The 2D photonic crystals are designed as polarization independent reflectance filters with a narrow spectral bandwidth centered at lambda=532 nm by utilizing the guid...

متن کامل

Mechanically tunable photonic crystal structure

We report a tunable nanophotonic device concept based on flexible photonic crystal, which is comprised of a periodic array of high-index dielectric material and a low-index flexible polymer. Tunability is achieved by applying mechanical force with nano-/microelectromechanical system actuators. The mechanical stress induces changes in the periodicity of the photonic crystal and consequently modi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013